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ABSTRACT 

Controversy regarding the correctness of a test for alias- 
ing proposed by Hinich and Wolinsky [3] has been surpris- 
ingly long-lived. Two factors have prolonged this contro- 
versy. One factor is the presence of deep-seated intuitions 
that such a test is fundamentally impossible. Perhaps the 
most compelling objection is that, given a set of discrete- 
time samples, one can construct an unaliased continuous- 
time series which exactly fits those samples. Therefore, the 
samples alone can not show that the original time series was 
aliased. The second factor prolonging the debate has been 
an inability of its proponents to unseat those objections. In 
fact, as is shown here, all objections can be met and the 
test as stated is correct. In particular, the role of stationarity 
as prior knowledge in addition to the sample values turns 
out to be crucial. Under certain conditions, including those 
addressed by the bispectral aliasing test, the continuous- 
time signals reconstructed from aliased samples are non- 
stationary. Therefore detecting aliasing in (at least some) 
stationary continuous-time processes both makes sense and 
can be done. The merits of the bispectral test for practical 
use are briefly addressed, but our primary concern here is its 
theoretical soundness. 

1. THE BISPECTRAL ALIASING TEST 

The domain of the discrete-time bispectrum is the two di- 
mensional bifrequency ( ~ 1 ,  W Z }  plane. Assuming a real- 
valued discrete-time series, the usual replication phenome- 
non dictates that all non-redundant information is confined 
to the square -T 5 W ~ , W Z  5 T. When one fully ac- 
counts for symmetries, the non-redundant information in 
the bispectrum is confined to a particular triangle inside this 
square [ 1,9]. 

the inner triangle, is unproblematic. The other piece, the 
outer triangle, is the source of the controversy under discus- 
sion. Naive consideration of the outer triangle shows that it 

This triangle naturally divides into two pieces. One piece, 
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involves frequencies higher than the Nyquist frequency and 
therefore must have something to do with aliasing. Hinich 
and Wolinsky [3] considered this more carefully and showed 
that the naive intuition is correct: if the discrete time series 
arises from sampling a stationary, band-limited, continuous- 
time process, and if the sampling rate is sufficiently rapid 
to avoid aliasing, then the discrete bispectrum is non-zero 
only in the inner triangular subset of the fundamental do- 
main. Conversely, if the bispectrum of a sampled stationary 
continuous-time process is non-zero in the outer triangle, 
then the sampling rate was too slow to avoid aliasing. 

It should be clearly understood that there is no assertion 
that aliasing in general can be detected. The statement is 
not “if a signal is aliased, then the outer triangle will have a 
non-zero bispectrum.” Rather, the assertion is the converse, 
“if the outer triangle shows a non-zero bispectrum, the (un- 
derlying) continuous-time signal must have been aliased.” 

At one level, this result is obvious and, in fact, the result 
was initially so-regarded [6]. However, doubt soon arose. 
Perhaps the most important source for suspicion is the argu- 
ment based on reconstruction alluded to above. 

In light of this objection, one is led to reconsider the 
association of the outer triangle with aliasing. One can take 
the position that there is no relation, as in [2]. One can 
decide that something is aliased, but that it is the bispectral 
estimator rather than the signal. There is some plausibility 
to this claim, for the frequencies that are involved in the 
outer triangle are W I ,  W Z ,  and W I +  wz  - 2 ~ .  This seems to 
be the position of Pflug et al. [5]. 

Or, one can try to delineate the conditions, if any, under 
which the test makes sense. This was done by Hinich and 
Messer in 1995[4]. They confirmed the validity of the orig- 
inal argument and stated its conclusions more carefully. In 
particular, they concluded that a non-zero bispectrum in the 
outer triangle indicates a non-random signal or one of the 
following: 

0 a random, but non-stationary signal ; 

0 a random, stationary, but aliased signal, or; 

0 a bispectral estimation error due a random, station- 
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ary, properly-sampled signal which violates the mix- 
ing condition. 

We believe that the analysis of Hinich and Messer, while 
entirely correct, did little to persuade the detractors of the 
test. In particular their analysis did not address the recon- 
struction objection and may have left the impression that 
the conditions under which the test applies are unlikely to 
be met in practice. 

In this paper, we show that the reconstruction objection 
is far from fatal. We further establish that stationarity is the 
only property which is crucial to the test. Since this prop- 
erty is required in order to define the bispectrum, one can 
legitimately apply the aliasing test whenever one is entitled 
to compute a bispectrum. Therefore the bispectral aliasing 
test is as theoretically sound as the bispectrum itself. 

2. THE SELECTION RULE AND BRILLINGER'S 
FORMULA 

The bispectrum, defined to be the triple Fourier transform 
of the third-order autocorrelation, reduces to a function of 
two frequencies since stationarity confines the spectrum to 
the plane through the origin of the frequency domain per- 
pendicular to the vector (l,l ,  1): 

8123(C3(tlrt2rt3)) = b(wl,w2)6(wl + w2 + w3). (1) 

Another way of computing the bispectrum is to switch 
the order in which one does the Fourier transforming and 
the ensemble averaging. This leads to the following result: 

(2) 

If the process is bandlimited and X ( w )  = 0 for Iw I > a, 
then the bispectrum is confined to the intersection of the 
(l,l,l)planeandthea-cube(i.e. (wlrw2,wg) E ( -ala)@ 
(-T ,  T) @ (-a, T )  ). The plane and its projection onto the 
(wl, w2) plane is shown in Figure 1. Upon sampling with 
unit time step, one obtains the usual replication in three di- 
mensions. (Doing everything in three dimensions and pro- 
jecting at the end keeps things simpler and makes it easier 
to avoid errors.) In particular, one finds that if the prccess 
is sampled at a frequency greater than twice the highest fre- 
quency component, then the bispectrum is confined to the 
replications of the tilted hexagon shown. 

The replication gives the discrete-time bispectrum bd, 

b(w,w2) = (X(w1)X(w2>X(w, = w1 + w2)). 

bd(A1, A21 A3) = b(wl,w2,@3)r (3) 
U1 +w o+w.=o 

where wi = Xi + 2ak for integer k .  
Since the replication does not cause any overlaps, the 

outer triangle remains empty. This is the Hinich and Wolin- 
sky aliasing theorem. (Note that the outer triangle is equiv- 
alent to the bigger triangle with vertices (0, T ,  0), (0, 0 ,  a )  
and (0, a, a )  by symmetries. See [l, 91 for details.) 

Figure 1: The origin of the bispectral fundamental domain. 

3. THE RECONSTRUCTION OBJECTION 

Suppose we have a stationary process x ( t )  and we under- 
sample it by sampling at t E Z. Then by convolving x ( t )  
with the appropriate sinc function we get a reconstructed 
process x, (t). This new process will have exactly the same 
samples as the original process and therefore exactly the 
same sampled bispectrum: yet it is not aliased. Therefore 
for any process that is undersampled, we have another pro- 
cess producing an identical sampled process which is not 
undersampled, showing that that one could not possibly de- 
tect aliasing via the bispectrum computed from samples! 

The rub here is the fact that the reconstructed signal will 
not necessarily be stationary. Processes reconstructed from 
aliased samples of continuous-time signals are generally cy- 
clostationary but not stationary. Some aliased processes do, 
in fact, reconstruct into stationary processes. But in the class 
of stationary signals for which the bispectral aliasing test 
gives positive results, reconstruction from aliased samples 
produces non-stationary processes. 

To carefully illustrate this we will consider several sta- 
tionary processes generated by taking a periodic signal with 
period T and giving it a random shift 8 E [O,T). A sample 
path of our process then has the form t ( t + 8 )  for a particular 
choice of 8. 

Consider then the effect of undersampling and recon- 
struction on a simple sine process, 

z ( t )  = sin(27rft + 2af8), (4) 

where 8 is evenly distributed on [0, f-'). If we undersam- 
ple and then reconstruct via convolution with the sinc filter, 
we get the sine process given by 

where f is the aliased frequency. The key point is that the 
phase of the reconstructed signal is the same as the phase 
of the source even though the frequency has changed to the 
aliased value f. For a process with a single harmonic, the 
reconstructed signal remains stationary because the phase 
term, 27r f 8, is evenly distributed on 2a. 
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Consider then a second signal process, 

z ( t )  = sin(2xat + 2 7 4  + sin(2xpt + 2.lrp8), (6)  

where p is an integer multiple of a and 8 is chosen randomly 
from the interval [O,a-l). Since the time shift, 8, is the 
same for both components, this is, for the various values of 
0 ,  just a shifted waveform of a given shape. Since 8 is evenly 
distributed over the period, a-’, the process is stationary. 

If we sample this process at’a rate low enough for both 
components to be aliased and then reconstruct using the sinc 
filter, we get 

z,(t) = s i n ( 2 ~ ~  + 2Tae) + sin(2xBt + axpe), (7) 

where r5 and are the aliased frequencies. Although the 
phase terms, 2xa8 and 27$8, are still evenly distributed 
over 2x, they now correspond to different time shifts for the 
two components. Thus, we no longer have a single shifted 
waveform and we can expect, in general, that the recon- 
structed process will no longer be stationary. In fact, the 
process can easily be seen to be cyclostationary. See Figure 
2 [8]. (Note that the original stationary process is not er- 
godic. Since computation of the bispectrum requires one to 
“average over the ensemble”, one cannot get the result from 
a single realization of the process.) 

Time 

Figure 2: Cyclostationarity of a signal reconstructed from 
aliased samples. The lower curve is the process envelope. 
The upper curve is the sixth moment, chosen for ease of 
display. The parameter values are a = 1.0 andp = 3.0 (see 
Equation 6) .  The sampling interval is e. 

Finally, consider the process defined by 

z(t)  = cos((10/20)xt + 5 . 2 4  + 
cos( (12/20)7rt + 6 .2x8) + 
c0s((22/20)d + 1 1 . 2 4  

(8) 

where 8 is chosen randomly from [0,1). 
Because the phases of these components are in a fixed 

relation, this process has a spike in the bispectrum at w1 = 
10/207r, w2 = 12/207r, i.e., in the outer triangle. Upon 

sampling at unit times and reconstructing, the signal is given 
by 

z ( t )  = c0s( (10/20)~  + 5 . 2 4  + 
cos((12/20)7rt + 6 . 2 4  + (9) 
cOs(-(i8/20)7rt + 1 1 . 2 ~ 8 )  

which is not stationary. Therefore we have a signal with 
nonempty outer triangle whose reconstruction is not station- 
ary. This situation is exactly what the bispectral test implies 
happens whenever the outer triangle is nonempty. The loss 
of stationarity causes the Fourier transform of the triple au- 
tocorrelation to “move off’ of the (1,1,1) plane. 

Therefore, if one knows (or is willing to assume) that 
the process which generated the observed samples was sta- 
tionary, one can rule out the unaliased reconstruction as the 
source of the samples. In a sense, the continuous time sig- 
nal reconstructed from aliased samples of an original time 
series is a “measure zero” object. This result is very surpris- 
ing to most people’s intuitions. It is studied further in Vixie, 
Sigeti and Wolinsky [8]. 

4. THE REPLICATION OBJECTION 

Upon looking at Equation 2 one may observe that even if 
X ( w )  = 0 for Iw I > x ,  sampling effectively fills in the spec- 
trum at higher frequencies. This is the basis for the objec- 
tion appearing in Swami [7]. This concern is addressed as 
follows. While the spectrum does indeed fill out upon sam- 
pling, the undesired expectations remain zero. Consider a 
(statistically stationary) ensemble constructed by uniformly 
translating a periodic or finite-duration waveform z( t ) .  Two 
operations are necessary to produce the discrete-time en- 
semble; a shift in time uniformly distributed over a period 
T, which introduces linear phase factors, and sampling, which 
produces spectrum replication. These operations do not com- 
mute: i.e., one needs to time-shift the waveform first and 
then sample, rather than to shift its samples. For the shifted 
samples zd(t + 8) one finds 

But for the sampled shifted waveforms z(t + 8) Id ,  i.e., 
the waveforms needed to construct a stationary ensemble, 
the phase of the original signal is propagated to higher fre- 
quencies periodically rather than linearly. This difference 
leads to the vanishing of unwanted expectations. 

For example, consider the process given by the randomly 
shifted sum of unit amplitude cosine waves with frequencies 
at n/20 (rads) where n takes integer values from 1 to 19. 
Upon sampling at half-unit times, the spectrum has compo- 
nents at w1 = 107r/20, w2 = l ln/20 and w g  = -217r/20 
but the average 
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reduces to 

(12) 

where 0 is chosen with uniform probability from [0,1). This 
average vanishes. Therefore, the potential contribution in 
the outer triangle is zero because averaging kills it. This is 
in contrast to the case where the average is zero because the 
spectral amplitudes are themselves zero (as in the proof of 
the aliasing test). 

5. EMPIRICAL COUNTER-EXAMPLES 

Other objections to the test have been made. Frequently 
these objections involve a (purported) counter-examp!e to 
the bispectral aliasing test. A particularly clear example is 
provided by Frazer, Reilly and Boashash [2]. Here the au- 
thors do two things. They present an example of an aliased 
signal which the aliasing test fails to mark as aliased. The 
example is unproblematic: neither the aliasing test nor any 
aliasing test we are aware of will detect all aliased signals. 
It is not, however, a counter-example to the test. Since there 
is nothing in the outer triangle, the bispectral aliasing test 
makes no assertion regarding the presence of aliasing. 

The other example the authors provide is more interest- 
ing. It consists of a signal involving coupled sinusoids at 

the authors show that there is a peak in the outer triangle 
under conditions which rule out aliasing. As the authors 
note these frequencies sum to 1 Hz (the sampling rate). Un- 
der these conditions the authors are correct in asserting that 
the aliasing test gives a positive result, which they believe 
to be‘incorrect. However, what the aliasing test actually in- 
dicates is that this signal is non-stationary. The particular 
interaction which the authors have constructed is not one 
for which the continuous-time selection criteria is met, i.e., 
the frequencies involved do not sum to zero. Samples of this 
signal do meet the discrete-time stationarity condition and 
so a non-zero bispectrum is possible in the outer triangle. 

One can look at these results in various ways. Our po- 
sition is that neither example constitutes a counter-example 
to the validity of the aliasing test in theory, though they both 
show that the test is limited in practice. The first example 
shows that there are aliased signals which the test does not 
see. This is obvious anyway since there are signals with 
zero bispectrum whose samples can be aliased. The sec- 
ond example shows that the term “aliasing test” must be 
restricted to stationary signals. As stated earlier, this re- 
striction is inherent in the definition of the bispectrum. 

~1 = O.3125”3, ~2 = 0.25Hz and ~3 = .4375Hz and 

6. CONCLUSIONS 

So, is this something for nothing? How can one get informa- 
tion about higher-frequency amplitudes from what is usu- 

ally thought of as Nyquist-limited data? The answer is of 
course that the assumption of stationarity is far from noth- 
ing. But, to exploit stationarity one must be able to perform 
the ensemble averaging indicated in the definition of the bis- 
pectrum. This implies that one must either have an ergodic 
process or have access to sufficiently many sample paths. 

It is certainly possible that, in practice, the bispectrum 
can be usefully applied to signals for which there is no the- 
oretical justification. For such uses the aliasing test is silent. 
However, it is essential that a clear understanding of the 
fundamental properties of higher-order spectra be available. 
And the present authors believe that correct understanding 
of the outer triangle leads to deeper insight into the meaning 
of the bispectrum in general. 
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